[Devel] [PATCH -mm 2/4] sl[au]b: charge slabs to memcg explicitly
Vladimir Davydov
vdavydov at parallels.com
Thu Mar 27 00:38:30 PDT 2014
On 03/27/2014 01:58 AM, Michal Hocko wrote:
> On Wed 26-03-14 19:28:05, Vladimir Davydov wrote:
>> We have only a few places where we actually want to charge kmem so
>> instead of intruding into the general page allocation path with
>> __GFP_KMEMCG it's better to explictly charge kmem there. All kmem
>> charges will be easier to follow that way.
>>
>> This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG
>> from memcg caches' allocflags. Instead it makes slab allocation path
>> call memcg_charge_kmem directly getting memcg to charge from the cache's
>> memcg params.
> Yes, removing __GFP_KMEMCG is definitely a good step. I am currently at
> a conference and do not have much time to review this properly (even
> worse will be on vacation for the next 2 weeks) but where did all the
> static_key optimization go? What am I missing.
I expected this question, because I want somebody to confirm if we
really need such kind of optimization in the slab allocation path. From
my POV, since we thrash cpu caches there anyway by calling alloc_pages,
wrapping memcg_charge_slab in a static branch wouldn't result in any
noticeable performance boost.
I do admit we benefit from static branching in memcg_kmem_get_cache,
because this one is called on every kmem object allocation, but slab
allocations happen much rarer.
I don't insist on that though, so if you say "no", I'll just add
__memcg_charge_slab and make memcg_charge_slab call it if the static key
is on, but may be, we can avoid such code bloating?
Thanks.
>> Signed-off-by: Vladimir Davydov <vdavydov at parallels.com>
>> Cc: Johannes Weiner <hannes at cmpxchg.org>
>> Cc: Michal Hocko <mhocko at suse.cz>
>> Cc: Glauber Costa <glommer at gmail.com>
>> Cc: Christoph Lameter <cl at linux-foundation.org>
>> Cc: Pekka Enberg <penberg at kernel.org>
>> ---
>> include/linux/memcontrol.h | 24 +++++++++++++-----------
>> mm/memcontrol.c | 15 +++++++++++++++
>> mm/slab.c | 7 ++++++-
>> mm/slab_common.c | 6 +-----
>> mm/slub.c | 24 +++++++++++++++++-------
>> 5 files changed, 52 insertions(+), 24 deletions(-)
>>
>> diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
>> index e9dfcdad24c5..b8aaecc25cbf 100644
>> --- a/include/linux/memcontrol.h
>> +++ b/include/linux/memcontrol.h
>> @@ -512,6 +512,9 @@ void memcg_update_array_size(int num_groups);
>> struct kmem_cache *
>> __memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
>>
>> +int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order);
>> +void memcg_uncharge_slab(struct kmem_cache *s, int order);
>> +
>> void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
>> int __kmem_cache_destroy_memcg_children(struct kmem_cache *s);
>>
>> @@ -589,17 +592,7 @@ memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
>> * @cachep: the original global kmem cache
>> * @gfp: allocation flags.
>> *
>> - * This function assumes that the task allocating, which determines the memcg
>> - * in the page allocator, belongs to the same cgroup throughout the whole
>> - * process. Misacounting can happen if the task calls memcg_kmem_get_cache()
>> - * while belonging to a cgroup, and later on changes. This is considered
>> - * acceptable, and should only happen upon task migration.
>> - *
>> - * Before the cache is created by the memcg core, there is also a possible
>> - * imbalance: the task belongs to a memcg, but the cache being allocated from
>> - * is the global cache, since the child cache is not yet guaranteed to be
>> - * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
>> - * passed and the page allocator will not attempt any cgroup accounting.
>> + * All memory allocated from a per-memcg cache is charged to the owner memcg.
>> */
>> static __always_inline struct kmem_cache *
>> memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
>> @@ -667,6 +660,15 @@ memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
>> {
>> return cachep;
>> }
>> +
>> +static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
>> +{
>> + return 0;
>> +}
>> +
>> +static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
>> +{
>> +}
>> #endif /* CONFIG_MEMCG_KMEM */
>> #endif /* _LINUX_MEMCONTROL_H */
>>
>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>> index 81a162d01d4d..9bbc088e3107 100644
>> --- a/mm/memcontrol.c
>> +++ b/mm/memcontrol.c
>> @@ -3506,6 +3506,21 @@ out:
>> }
>> EXPORT_SYMBOL(__memcg_kmem_get_cache);
>>
>> +int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
>> +{
>> + if (is_root_cache(s))
>> + return 0;
>> + return memcg_charge_kmem(s->memcg_params->memcg, gfp,
>> + PAGE_SIZE << order);
>> +}
>> +
>> +void memcg_uncharge_slab(struct kmem_cache *s, int order)
>> +{
>> + if (is_root_cache(s))
>> + return;
>> + memcg_uncharge_kmem(s->memcg_params->memcg, PAGE_SIZE << order);
>> +}
>> +
>> /*
>> * We need to verify if the allocation against current->mm->owner's memcg is
>> * possible for the given order. But the page is not allocated yet, so we'll
>> diff --git a/mm/slab.c b/mm/slab.c
>> index eebc619ae33c..af126a37dafd 100644
>> --- a/mm/slab.c
>> +++ b/mm/slab.c
>> @@ -1664,8 +1664,12 @@ static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
>> if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
>> flags |= __GFP_RECLAIMABLE;
>>
>> + if (memcg_charge_slab(cachep, flags, cachep->gfporder))
>> + return NULL;
>> +
>> page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
>> if (!page) {
>> + memcg_uncharge_slab(cachep, cachep->gfporder);
>> if (!(flags & __GFP_NOWARN) && printk_ratelimit())
>> slab_out_of_memory(cachep, flags, nodeid);
>> return NULL;
>> @@ -1724,7 +1728,8 @@ static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
>> memcg_release_pages(cachep, cachep->gfporder);
>> if (current->reclaim_state)
>> current->reclaim_state->reclaimed_slab += nr_freed;
>> - __free_memcg_kmem_pages(page, cachep->gfporder);
>> + __free_pages(page, cachep->gfporder);
>> + memcg_uncharge_slab(cachep, cachep->gfporder);
>> }
>>
>> static void kmem_rcu_free(struct rcu_head *head)
>> diff --git a/mm/slab_common.c b/mm/slab_common.c
>> index f3cfccf76dda..6673597ac967 100644
>> --- a/mm/slab_common.c
>> +++ b/mm/slab_common.c
>> @@ -290,12 +290,8 @@ void kmem_cache_create_memcg(struct mem_cgroup *memcg, struct kmem_cache *root_c
>> root_cache->size, root_cache->align,
>> root_cache->flags, root_cache->ctor,
>> memcg, root_cache);
>> - if (IS_ERR(s)) {
>> + if (IS_ERR(s))
>> kfree(cache_name);
>> - goto out_unlock;
>> - }
>> -
>> - s->allocflags |= __GFP_KMEMCG;
>>
>> out_unlock:
>> mutex_unlock(&slab_mutex);
>> diff --git a/mm/slub.c b/mm/slub.c
>> index c2e58a787443..6fefe3b33ce0 100644
>> --- a/mm/slub.c
>> +++ b/mm/slub.c
>> @@ -1317,17 +1317,26 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x)
>> /*
>> * Slab allocation and freeing
>> */
>> -static inline struct page *alloc_slab_page(gfp_t flags, int node,
>> - struct kmem_cache_order_objects oo)
>> +static inline struct page *alloc_slab_page(struct kmem_cache *s,
>> + gfp_t flags, int node, struct kmem_cache_order_objects oo)
>> {
>> + struct page *page;
>> int order = oo_order(oo);
>>
>> flags |= __GFP_NOTRACK;
>>
>> + if (memcg_charge_slab(s, flags, order))
>> + return NULL;
>> +
>> if (node == NUMA_NO_NODE)
>> - return alloc_pages(flags, order);
>> + page = alloc_pages(flags, order);
>> else
>> - return alloc_pages_exact_node(node, flags, order);
>> + page = alloc_pages_exact_node(node, flags, order);
>> +
>> + if (!page)
>> + memcg_uncharge_slab(s, order);
>> +
>> + return page;
>> }
>>
>> static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
>> @@ -1349,7 +1358,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
>> */
>> alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
>>
>> - page = alloc_slab_page(alloc_gfp, node, oo);
>> + page = alloc_slab_page(s, alloc_gfp, node, oo);
>> if (unlikely(!page)) {
>> oo = s->min;
>> alloc_gfp = flags;
>> @@ -1357,7 +1366,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
>> * Allocation may have failed due to fragmentation.
>> * Try a lower order alloc if possible
>> */
>> - page = alloc_slab_page(alloc_gfp, node, oo);
>> + page = alloc_slab_page(s, alloc_gfp, node, oo);
>>
>> if (page)
>> stat(s, ORDER_FALLBACK);
>> @@ -1473,7 +1482,8 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
>> page_mapcount_reset(page);
>> if (current->reclaim_state)
>> current->reclaim_state->reclaimed_slab += pages;
>> - __free_memcg_kmem_pages(page, order);
>> + __free_pages(page, order);
>> + memcg_uncharge_slab(s, order);
>> }
>>
>> #define need_reserve_slab_rcu \
>> --
>> 1.7.10.4
>>
More information about the Devel
mailing list