[Devel] [PATCH 1/4] memcg: kmem controller dispatch infrastructure

Glauber Costa glommer at parallels.com
Fri Jun 8 02:43:18 PDT 2012


With all the dependencies already in place, this patch introduces
the dispatcher functions for the slab cache accounting in memcg.

Before we can charge a cache, we need to select the right cache.
This is done by using the function __mem_cgroup_get_kmem_cache().

If we should use the root kmem cache, this function tries to detect
that and return as early as possible.

In memcontrol.h those functions are wrapped in inline acessors.
The idea is to later on, patch those with jump labels, so we don't
incur any overhead when no mem cgroups are being used.

Because the slub allocator tends to inline the allocations whenever
it can, those functions need to be exported so modules can make use
of it properly.

This code is inspired by the code written by Suleiman Souhlal,
but heavily changed.

Signed-off-by: Glauber Costa <glommer at parallels.com>
Signed-off-by: Suleiman Souhlal <suleiman at google.com>
CC: Christoph Lameter <cl at linux.com>
CC: Pekka Enberg <penberg at cs.helsinki.fi>
CC: Michal Hocko <mhocko at suse.cz>
CC: Kamezawa Hiroyuki <kamezawa.hiroyu at jp.fujitsu.com>
CC: Johannes Weiner <hannes at cmpxchg.org>
---
 include/linux/memcontrol.h |   72 +++++++++
 init/Kconfig               |    2 +-
 mm/memcontrol.c            |  356 +++++++++++++++++++++++++++++++++++++++++++-
 3 files changed, 428 insertions(+), 2 deletions(-)

diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index f93021a..b6acf39 100644
--- a/include/linux/memcontrol.h
+++ b/include/linux/memcontrol.h
@@ -21,6 +21,7 @@
 #define _LINUX_MEMCONTROL_H
 #include <linux/cgroup.h>
 #include <linux/vm_event_item.h>
+#include <linux/hardirq.h>
 
 struct mem_cgroup;
 struct page_cgroup;
@@ -447,6 +448,16 @@ void mem_cgroup_register_cache(struct mem_cgroup *memcg,
 void mem_cgroup_release_cache(struct kmem_cache *cachep);
 extern char *mem_cgroup_cache_name(struct mem_cgroup *memcg,
 				   struct kmem_cache *cachep);
+
+void mem_cgroup_flush_cache_create_queue(void);
+bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order);
+void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order);
+void __mem_cgroup_free_kmem_page(struct page *page, int order);
+
+struct kmem_cache *
+__mem_cgroup_get_kmem_cache(struct kmem_cache *cachep, gfp_t gfp);
+
+#define mem_cgroup_kmem_on 1
 #else
 static inline void mem_cgroup_register_cache(struct mem_cgroup *memcg,
 					     struct kmem_cache *s)
@@ -463,6 +474,67 @@ static inline void sock_update_memcg(struct sock *sk)
 static inline void sock_release_memcg(struct sock *sk)
 {
 }
+
+static inline void
+mem_cgroup_flush_cache_create_queue(void)
+{
+}
+
+static inline void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
+{
+}
+
+#define mem_cgroup_kmem_on 0
+#define __mem_cgroup_get_kmem_cache(a, b) a
+#define __mem_cgroup_new_kmem_page(a, b, c) false
+#define __mem_cgroup_free_kmem_page(a,b )
+#define __mem_cgroup_commit_kmem_page(a, b, c)
 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
+static __always_inline struct kmem_cache *
+mem_cgroup_get_kmem_cache(struct kmem_cache *cachep, gfp_t gfp)
+{
+	if (!mem_cgroup_kmem_on)
+		return cachep;
+	if (!current->mm)
+		return cachep;
+	if (in_interrupt())
+		return cachep;
+	if (gfp & __GFP_NOFAIL)
+		return cachep;
+
+	return __mem_cgroup_get_kmem_cache(cachep, gfp);
+}
+
+static __always_inline
+bool mem_cgroup_new_kmem_page(gfp_t gfp, void *handle, int order)
+{
+	if (!mem_cgroup_kmem_on)
+		return true;
+	if (!(gfp & __GFP_SLABMEMCG))
+		return true;
+	if (!current->mm)
+		return true;
+	if (in_interrupt())
+		return true;
+	if (gfp & __GFP_NOFAIL)
+		return true;
+	return __mem_cgroup_new_kmem_page(gfp, handle, order);
+}
+
+static __always_inline
+void mem_cgroup_free_kmem_page(struct page *page, int order)
+{
+	if (mem_cgroup_kmem_on)
+		__mem_cgroup_free_kmem_page(page, order);
+}
+
+static __always_inline
+void mem_cgroup_commit_kmem_page(struct page *page, struct mem_cgroup *handle,
+				 int order)
+{
+	if (mem_cgroup_kmem_on)
+		__mem_cgroup_commit_kmem_page(page, handle, order);
+}
+
 #endif /* _LINUX_MEMCONTROL_H */
 
diff --git a/init/Kconfig b/init/Kconfig
index 6cfd71d..af98c30 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -696,7 +696,7 @@ config CGROUP_MEM_RES_CTLR_SWAP_ENABLED
 	  then swapaccount=0 does the trick).
 config CGROUP_MEM_RES_CTLR_KMEM
 	bool "Memory Resource Controller Kernel Memory accounting (EXPERIMENTAL)"
-	depends on CGROUP_MEM_RES_CTLR && EXPERIMENTAL
+	depends on CGROUP_MEM_RES_CTLR && EXPERIMENTAL && !SLOB
 	default n
 	help
 	  The Kernel Memory extension for Memory Resource Controller can limit
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 3764097..45f7ece 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -10,6 +10,10 @@
  * Copyright (C) 2009 Nokia Corporation
  * Author: Kirill A. Shutemov
  *
+ * Kernel Memory Controller
+ * Copyright (C) 2012 Parallels Inc. and Google Inc.
+ * Authors: Glauber Costa and Suleiman Souhlal
+ *
  * This program is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 2 of the License, or
@@ -321,6 +325,11 @@ struct mem_cgroup {
 #ifdef CONFIG_INET
 	struct tcp_memcontrol tcp_mem;
 #endif
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+	/* Slab accounting */
+	struct kmem_cache *slabs[MAX_KMEM_CACHE_TYPES];
+#endif
 };
 
 int memcg_css_id(struct mem_cgroup *memcg)
@@ -414,6 +423,9 @@ static void mem_cgroup_put(struct mem_cgroup *memcg);
 #include <net/ip.h>
 
 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
+static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta);
+static void memcg_uncharge_kmem(struct mem_cgroup *memcg, s64 delta);
+
 void sock_update_memcg(struct sock *sk)
 {
 	if (mem_cgroup_sockets_enabled) {
@@ -503,7 +515,14 @@ static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
 	return new;
 }
 
+static inline bool mem_cgroup_kmem_enabled(struct mem_cgroup *memcg)
+{
+	return !mem_cgroup_disabled() && memcg &&
+	       !mem_cgroup_is_root(memcg) && memcg->kmem_accounted;
+}
+
 struct ida cache_types;
+static DEFINE_MUTEX(memcg_cache_mutex);
 
 void mem_cgroup_register_cache(struct mem_cgroup *memcg,
 			       struct kmem_cache *cachep)
@@ -518,9 +537,274 @@ void mem_cgroup_register_cache(struct mem_cgroup *memcg,
 
 void mem_cgroup_release_cache(struct kmem_cache *cachep)
 {
+	mem_cgroup_flush_cache_create_queue();
 	if (cachep->memcg_params.id != -1)
 		ida_simple_remove(&cache_types, cachep->memcg_params.id);
 }
+
+static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
+						  struct kmem_cache *cachep)
+{
+	struct kmem_cache *new_cachep;
+	int idx;
+
+	BUG_ON(!mem_cgroup_kmem_enabled(memcg));
+
+	idx = cachep->memcg_params.id;
+
+	mutex_lock(&memcg_cache_mutex);
+	new_cachep = memcg->slabs[idx];
+	if (new_cachep)
+		goto out;
+
+	new_cachep = kmem_cache_dup(memcg, cachep);
+
+	if (new_cachep == NULL) {
+		new_cachep = cachep;
+		goto out;
+	}
+
+	mem_cgroup_get(memcg);
+	memcg->slabs[idx] = new_cachep;
+	new_cachep->memcg_params.memcg = memcg;
+	atomic_set(&new_cachep->memcg_params.refcnt, 1);
+out:
+	mutex_unlock(&memcg_cache_mutex);
+	return new_cachep;
+}
+
+struct create_work {
+	struct mem_cgroup *memcg;
+	struct kmem_cache *cachep;
+	struct list_head list;
+};
+
+/* Use a single spinlock for destruction and creation, not a frequent op */
+static DEFINE_SPINLOCK(cache_queue_lock);
+static LIST_HEAD(create_queue);
+
+/*
+ * Flush the queue of kmem_caches to create, because we're creating a cgroup.
+ *
+ * We might end up flushing other cgroups' creation requests as well, but
+ * they will just get queued again next time someone tries to make a slab
+ * allocation for them.
+ */
+void mem_cgroup_flush_cache_create_queue(void)
+{
+	struct create_work *cw, *tmp;
+	unsigned long flags;
+
+	spin_lock_irqsave(&cache_queue_lock, flags);
+	list_for_each_entry_safe(cw, tmp, &create_queue, list) {
+		list_del(&cw->list);
+		kfree(cw);
+	}
+	spin_unlock_irqrestore(&cache_queue_lock, flags);
+}
+
+static void memcg_create_cache_work_func(struct work_struct *w)
+{
+	struct create_work *cw, *tmp;
+	unsigned long flags;
+	LIST_HEAD(create_unlocked);
+
+	spin_lock_irqsave(&cache_queue_lock, flags);
+	list_for_each_entry_safe(cw, tmp, &create_queue, list)
+		list_move(&cw->list, &create_unlocked);
+	spin_unlock_irqrestore(&cache_queue_lock, flags);
+
+	list_for_each_entry_safe(cw, tmp, &create_unlocked, list) {
+		list_del(&cw->list);
+		memcg_create_kmem_cache(cw->memcg, cw->cachep);
+		/* Drop the reference gotten when we enqueued. */
+		css_put(&cw->memcg->css);
+		kfree(cw);
+	}
+}
+
+static DECLARE_WORK(memcg_create_cache_work, memcg_create_cache_work_func);
+
+/*
+ * Enqueue the creation of a per-memcg kmem_cache.
+ * Called with rcu_read_lock.
+ */
+static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
+				       struct kmem_cache *cachep)
+{
+	struct create_work *cw;
+	unsigned long flags;
+
+	spin_lock_irqsave(&cache_queue_lock, flags);
+	list_for_each_entry(cw, &create_queue, list) {
+		if (cw->memcg == memcg && cw->cachep == cachep) {
+			spin_unlock_irqrestore(&cache_queue_lock, flags);
+			return;
+		}
+	}
+	spin_unlock_irqrestore(&cache_queue_lock, flags);
+
+	/* The corresponding put will be done in the workqueue. */
+	if (!css_tryget(&memcg->css))
+		return;
+
+	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
+	if (cw == NULL) {
+		css_put(&memcg->css);
+		return;
+	}
+
+	cw->memcg = memcg;
+	cw->cachep = cachep;
+	spin_lock_irqsave(&cache_queue_lock, flags);
+	list_add_tail(&cw->list, &create_queue);
+	spin_unlock_irqrestore(&cache_queue_lock, flags);
+
+	schedule_work(&memcg_create_cache_work);
+}
+
+/*
+ * Return the kmem_cache we're supposed to use for a slab allocation.
+ * We try to use the current memcg's version of the cache.
+ *
+ * If the cache does not exist yet, if we are the first user of it,
+ * we either create it immediately, if possible, or create it asynchronously
+ * in a workqueue.
+ * In the latter case, we will let the current allocation go through with
+ * the original cache.
+ *
+ * Can't be called in interrupt context or from kernel threads.
+ * This function needs to be called with rcu_read_lock() held.
+ */
+struct kmem_cache *__mem_cgroup_get_kmem_cache(struct kmem_cache *cachep,
+					     gfp_t gfp)
+{
+	struct mem_cgroup *memcg;
+	int idx;
+	struct task_struct *p;
+
+	if (cachep->memcg_params.memcg)
+		return cachep;
+
+	idx = cachep->memcg_params.id;
+	VM_BUG_ON(idx == -1);
+
+	rcu_read_lock();
+	p = rcu_dereference(current->mm->owner);
+	memcg = mem_cgroup_from_task(p);
+	rcu_read_unlock();
+
+	if (!mem_cgroup_kmem_enabled(memcg))
+		return cachep;
+
+	if (memcg->slabs[idx] == NULL) {
+		memcg_create_cache_enqueue(memcg, cachep);
+		return cachep;
+	}
+
+	return memcg->slabs[idx];
+}
+EXPORT_SYMBOL(__mem_cgroup_get_kmem_cache);
+
+bool __mem_cgroup_new_kmem_page(gfp_t gfp, void *_handle, int order)
+{
+	struct mem_cgroup *memcg;
+	struct mem_cgroup *handle = *(struct mem_cgroup **)_handle;
+	bool ret = true;
+	size_t size;
+	struct task_struct *p;
+
+	handle = NULL;
+	rcu_read_lock();
+	p = rcu_dereference(current->mm->owner);
+	memcg = mem_cgroup_from_task(p);
+	if (!mem_cgroup_kmem_enabled(memcg))
+		goto out;
+
+	mem_cgroup_get(memcg);
+
+	size = (1 << order) << PAGE_SHIFT;
+	ret = memcg_charge_kmem(memcg, gfp, size) == 0;
+	if (!ret) {
+		mem_cgroup_put(memcg);
+		goto out;
+	}
+	handle = memcg;
+out:
+	rcu_read_unlock();
+	return ret;
+}
+EXPORT_SYMBOL(__mem_cgroup_new_kmem_page);
+
+void __mem_cgroup_commit_kmem_page(struct page *page, void *handle, int order)
+{
+	struct page_cgroup *pc;
+	struct mem_cgroup *memcg = handle;
+	size_t size;
+
+	if (!memcg)
+		return;
+
+	WARN_ON(mem_cgroup_is_root(memcg));
+	/* The page allocation must have failed. Revert */
+	if (!page) {
+		size = (1 << order) << PAGE_SHIFT;
+		memcg_uncharge_kmem(memcg, size);
+		mem_cgroup_put(memcg);
+		return;
+	}
+
+	pc = lookup_page_cgroup(page);
+	lock_page_cgroup(pc);
+	pc->mem_cgroup = memcg;
+	SetPageCgroupUsed(pc);
+	unlock_page_cgroup(pc);
+}
+void __mem_cgroup_free_kmem_page(struct page *page, int order)
+{
+	struct mem_cgroup *memcg;
+	size_t size;
+	struct page_cgroup *pc;
+
+	if (mem_cgroup_disabled())
+		return;
+
+	pc = lookup_page_cgroup(page);
+	lock_page_cgroup(pc);
+	memcg = pc->mem_cgroup;
+	pc->mem_cgroup = NULL;
+	if (!PageCgroupUsed(pc)) {
+		unlock_page_cgroup(pc);
+		return;
+	}
+	ClearPageCgroupUsed(pc);
+	unlock_page_cgroup(pc);
+
+	/*
+	 * The classical disabled check won't work
+	 * for uncharge, since it is possible that the user enabled
+	 * kmem tracking, allocated, and then disabled.
+	 *
+	 * We trust if there is a memcg associated with the page,
+	 * it is a valid allocation
+	 */
+	if (!memcg)
+		return;
+
+	WARN_ON(mem_cgroup_is_root(memcg));
+	size = (1 << order) << PAGE_SHIFT;
+	memcg_uncharge_kmem(memcg, size);
+	mem_cgroup_put(memcg);
+}
+EXPORT_SYMBOL(__mem_cgroup_free_kmem_page);
+
+static void memcg_slab_init(struct mem_cgroup *memcg)
+{
+	int i;
+
+	for (i = 0; i < MAX_KMEM_CACHE_TYPES; i++)
+		memcg->slabs[i] = NULL;
+}
 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
 
 static void drain_all_stock_async(struct mem_cgroup *memcg);
@@ -4777,7 +5061,11 @@ static struct cftype kmem_cgroup_files[] = {
 
 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
 {
-	return mem_cgroup_sockets_init(memcg, ss);
+	int ret = mem_cgroup_sockets_init(memcg, ss);
+
+	if (!ret)
+		memcg_slab_init(memcg);
+	return ret;
 };
 
 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
@@ -5793,3 +6081,69 @@ static int __init enable_swap_account(char *s)
 __setup("swapaccount=", enable_swap_account);
 
 #endif
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
+int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, s64 delta)
+{
+	struct res_counter *fail_res;
+	struct mem_cgroup *_memcg;
+	int may_oom, ret;
+	bool nofail = false;
+
+	may_oom = (gfp & __GFP_WAIT) && (gfp & __GFP_FS) &&
+	    !(gfp & __GFP_NORETRY);
+
+	ret = 0;
+
+	if (!memcg)
+		return ret;
+
+	_memcg = memcg;
+	ret = __mem_cgroup_try_charge(NULL, gfp, delta / PAGE_SIZE,
+	    &_memcg, may_oom);
+
+	if (ret == -EINTR)  {
+		nofail = true;
+		/*
+		 * __mem_cgroup_try_charge() chose to bypass to root due
+		 * to OOM kill or fatal signal.
+		 * Since our only options are to either fail the
+		 * allocation or charge it to this cgroup, do it as
+		 * a temporary condition. But we can't fail. From a kmem/slab
+		 * perspective, the cache has already been selected, by
+		 * mem_cgroup_get_kmem_cache(), so it is too late to change our
+		 * minds
+		 */
+		res_counter_charge_nofail(&memcg->res, delta, &fail_res);
+		if (do_swap_account)
+			res_counter_charge_nofail(&memcg->memsw, delta,
+						  &fail_res);
+		ret = 0;
+	} else if (ret == -ENOMEM)
+		return ret;
+
+	if (nofail)
+		res_counter_charge_nofail(&memcg->kmem, delta, &fail_res);
+	else
+		ret = res_counter_charge(&memcg->kmem, delta, &fail_res);
+
+	if (ret) {
+		res_counter_uncharge(&memcg->res, delta);
+		if (do_swap_account)
+			res_counter_uncharge(&memcg->memsw, delta);
+	}
+
+	return ret;
+}
+
+void memcg_uncharge_kmem(struct mem_cgroup *memcg, s64 delta)
+{
+	if (!memcg)
+		return;
+
+	res_counter_uncharge(&memcg->kmem, delta);
+	res_counter_uncharge(&memcg->res, delta);
+	if (do_swap_account)
+		res_counter_uncharge(&memcg->memsw, delta);
+}
+#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
-- 
1.7.10.2




More information about the Devel mailing list